From balloons to shrimp-filled shallows, the future is wireless

From balloons to shrimp-filled shallows, the future is wireless

BY JEREMY WAGSTAFF

(Reuters) – The Internet may feel like it’s everywhere, but large pockets of sky, swathes of land and most of the oceans are still beyond a signal’s reach.

Three decades after the first cellphone went on sale – the $4,000 Motorola DynaTAC 8000X “Brick” – half the world remains unconnected. For some it costs too much, but up to a fifth of the population, or some 1.4 billion people, live where “the basic network infrastructure has yet to be built,” according to a Facebook white paper last month.

Even these figures, says Kurtis Heimerl, whose Berkeley-based start-up Endaga has helped build one of the world’s smallest telecoms networks in an eastern Indonesian village, ignore the many people who have a cellphone but have to travel hours to make a call or send a message. “Everyone in our community has a phone and a SIM card,” he says. “But they’re not covered.”

Heimerl reckons up to 2 billion people live most of their lives without easy access to cellular coverage. “It’s not getting better at the dramatic rate you think.”

The challenge is to find a way to connect those people, at an attractive cost.
And then there’s the frontier beyond that: the oceans.

Improving the range and speed of communications beneath the seas that cover more than two-thirds of the planet is a must for environmental monitoring – climate recording, pollution control, predicting natural disasters like tsunami, monitoring oil and gas fields, and protecting harbours.

There is also interest from oceanographers looking to map the sea bed, marine biologists, deep-sea archaeologists and those hunting for natural resources, or even searching for lost vessels or aircraft. Canadian miner Nautilus Minerals Inc said last week it came to an agreement with Papua New Guinea, allowing it to start work on the world’s first undersea metal mining project, digging for copper, gold and silver 1,500 metres (4,921 feet) beneath the Bismark Sea.

And there’s politics: China recently joined other major powers in deep-sea exploration, partly driven by a need to exploit oil, gas and mineral reserves. This year, Beijing plans to sink a 6-person ‘workstation’ to the sea bed, a potential precursor to a deep-sea ‘space station’ which, researchers say, could be inhabited.

“Our ability to communicate in water is limited,” says Jay Nagarajan, whose Singapore start-up Subnero builds underwater modems. “It’s a blue ocean space – if you’ll forgive the expression.”

BALLOONS, DRONES, SATELLITES
Back on land, the challenge is being taken up by a range of players – from high-minded academics wanting to help lift rural populations out of poverty to internet giants keen to add them to their social networks.

Google, for example, is buying Titan Aerospace, a maker of drones that can stay airborne for years, while Facebook has bought UK-based drone maker Ascenta.

CEO Mark Zuckerburg has said Facebook is working on drones and satellites to help bring the Internet to the nearly two thirds of the world that doesn’t yet have it. As part of its Project Loon, Google last year launched a balloon 20 km (12.4 miles) into the skies above New Zealand, providing wireless speeds of up to 3G quality to an area twice the size of New York City.

But these are experimental technologies, unlikely to be commercially viable for a decade, says Christian Patouraux, CEO of another Singapore start-up, Kacific. Its solution is a satellite network that aims to bring affordable internet to 40 million people in the so-called ‘Blue Continent’ – from eastern Indonesia to the Pacific islands.

A mix of technologies will prevail, says Patouraux – from fiber optic cables, 3G and LTE mobile technologies to satellites like his HTS Ku-band, which he hopes to launch by end-2016. “No single technology will ever solve everything,” he said.

Indeed, satellite technology – the main method of connectivity until submarine cables became faster and cheaper – is enjoying a comeback. While Kacific, O3b and others aim at hard-to-reach markets, satellite internet is having success even in some developed markets. Last year, ViaSat topped a benchmarking study of broadband speeds by the U.S. Federal Communications Commission.

And today’s airline passengers increasingly expect to be able to go online while flying, with around 40 percent of U.S. jetliners now offering some Wi-Fi. The number of commercial planes worldwide with wireless internet or cellphone service, or both, will triple in the next decade, says research firm IHS.

WHITE SPACE

Densely populated Singapore is experimenting with so-called ‘white space’, using those parts of the wireless spectrum previously set aside for television signals. This year, it has quietly started offering what it calls SuperWifi to deliver wireless signals over 5 km or more to beaches and tourist spots.

This is not just a first-world solution. Endaga”s Heimerl is working with co-founder Shaddi Hasan to use parts of the GSM spectrum to build his village-level telco in the hills of Papua.

That means an ordinary GSM cellphone can connect without any tweaks or hardware. Users can phone anyone on the same network and send SMS messages to the outside world through a deal with a Swedish operator.

Such communities, says Heimerl, will have to come up with such solutions because major telecoms firms just aren’t interested. “The problem is that these communities are small,” says Heimerl, “and even with the price of hardware falling the carriers would rather install 4G in cities than equipment in these communities.”

The notion of breaking free of telecoms companies isn’t just a pipe dream.

MESH

Part of the answer lies in mesh networks, where devices themselves serve as nodes connecting users – not unlike a trucker’s CB radio, says Paul Gardner-Stephen, Rural, Remote & Humanitarian Telecommunications Fellow at Flinders University in South Australia.

Gardner-Stephen has developed a mesh technology called Serval that has been used by activists lobbying against the demolition of slums in Nigeria, and is being tested by the New Zealand Red Cross.

Mesh networks aren’t necessarily small, rural and poor: Athens, Berlin and Vienna have them, too. And Google Chairman Eric Schmidt has called them “the most essential form of digital communication and the cheapest to deploy.”

Even without a balloon and Google’s heft, mesh networks offer a bright future, says Gardner-Stephen. If handset makers were to open up their chips to tweaks so their radios could communicate over long distances, it would be possible to relay messages more than a kilometre.

In any case, he says, the Internet is no longer about instantaneous communication. As long as we know our data will arrive at some point, the possibilities open up to thinking of our devices more as data couriers, storing messages on behalf of one community until they are carried by a villager to another node they can connect to, passing those messages on several times a day.

It’s not our present vision of a network where messages are transmitted in an instant, but more like a digital postal service, which might well be enough for some.

“Is the Internet going to be what it looks like today? The answer is no,” said Gardner-Stephen.

PISTOL SHRIMPS

As the Internet changes, so will its boundaries.

As more devices communicate with other devices – Cisco Systems Inc estimates there will be 2 billion such connections by 2018 – so is interest increasing in connecting those harder-to-reach devices, including those underwater, that are beyond the reach of satellites, balloons and base stations.

Using the same overground wireless methods for underwater communications isn’t possible, because light travels badly in water. Although technologies have improved greatly in recent years, underwater modems still rely on acoustic technologies that limit speeds to a fraction of what we’re now used to.

That’s partly because there are no agreed standards, says Subnero’s Nagarajan, who likens it to the early days of the Internet. Subnero offers underwater modems that look like small torpedoes which, he says, can incorporate competing standards and allow users to configure them.

This is a significant plus, says Mandar Chitre, an academic from the National University of Singapore, who said that off-the-shelf modems don’t work in the region’s shallow waters.

The problem: a crackling noise that sailors have variously attributed to rolling pebbles, surf, volcanoes, and, according to a U.S. submarine commander off Indonesia in 1942, the Japanese navy dropping some “newfangled gadget” into the water.

The actual culprit has since been identified – the so-called pistol shrimp, whose oversized claw snaps a bubble of hot air at its prey. Only recently has Chitre been able to filter out the shrimp’s noise from the sonic pulses an underwater modem sends. His technology is now licensed to Subnero.

There are still problems speeding up transmission and filtering out noise, he says. But the world is opening up to the idea that to understand the ocean means deploying permanent sensors and modems to communicate their data to shore.

And laying submarine cables would cost too much.

“The only way to do this is if you have communications technology. You can’t be wiring the whole ocean,” he told Reuters. “It’s got to be wireless.”

(Editing by Ian Geoghegan)

Behind the iPad’s sluggish sales

Sameer Singh offers some possible reasons for the fall in iPad sales: 

Pocketable vs. Tablet Computing | Tech-Thoughts by Sameer Singh: “With this background, the sudden decline in iPad sales may have been caused by a combination of the following factors:

  • Most high-end consumers who need iPads already own them (and as some analysts have pointed out, replacement cycles are long) 
  • Large screen smartphones have made media tablets somewhat redundant, i.e. the iPad is no longer a ‘necessary’ purchase for ‘phablet’ owners 
  • The iPad is priced out of the market segment that still finds media tablets ‘necessary’ 
  • Upmarket movement is limited because tablet use cases still haven’t evolved to cannibalize more productivity-related computing tasks (I may have overestimated the pace at which this would occur)”

To which I’d add: 

The iPad is in some ways closer to a PC than a phone in its utility vs luxury ratio. People upgrade their phones because they’re visible accessories, something that says something about the person holding it. Computers have barely hit that bar, and maybe iPads — especially since users usually cloak them in a stand/cover — don’t quite make it either. So unless there’s a really compelling performance/spec reason to upgrade, most don’t bother.

I’ve not seen data on this, but anecdotally most people I know get an iPad and then settle, rather than upgrading when the next one comes out. Of course the lack of telco subsidy for most iPad purchases adds to this. 

It’s not that iPad isn’t a great idea, but it turns out that the smarter move in a way has been to increase the size of the phone (phablet) rather than shrink the size of the computer (the iPad), at least in terms of getting people to upgrade. 

All at sea: global shipping fleet exposed to hacking threat

[Original link: this one includes links to the source material where available]

(Reuters) – The next hacker playground: the open seas – and the oil tankers and container vessels that ship 90 percent of the goods moved around the planet.

In this internet age, as more devices are hooked up online, so they become more vulnerable to attack. As industries like maritime and energy connect ships, containers and rigs to computer networks, they expose weaknesses that hackers can exploit.

Hackers recently shut down a floating oil rig by tilting it, while another rig was so riddled with computer malware that it took 19 days to make it seaworthy again; Somali pirates help choose their targets by viewing navigational data online, prompting ships to either turn off their navigational devices, or fake the data so it looks like they’re somewhere else; and hackers infiltrated computers connected to the Belgian port of Antwerp, located specific containers, made off with their smuggled drugs and deleted the records.

While data on the extent of the maritime industry’s exposure to cyber crime is hard to come by, a study of the related energy sector by insurance brokers Willis this month found [PDF] that the industry “may be sitting on an uninsured time bomb”.

Globally, it estimated that cyber attacks against oil and gas infrastructure will cost energy companies close to $1.9 billion by 2018. The British government reckons cyber attacks already cost UK oil and gas companies around 400 million pounds ($672 million) a year.

In the maritime industry, the number of known cases is low as attacks often remain invisible to the company, or businesses don’t want to report them for fear of alarming investors, regulators or insurers, security experts say.

There are few reports that hackers have compromised maritime cyber security. But researchers say they have discovered significant holes in the three key technologies sailors use to navigate: GPS, marine Automatic Identification System (AIS), and a system for viewing digital nautical charts called Electronic Chart Display and Information System (ECDIS).

“Increasingly, the maritime domain and energy sector has turned to technology to improve production, cost and reduce delivery schedules,” a NATO-accredited think-tank wrote in a recent report. “These technological changes have opened the door to emerging threats and vulnerabilities as equipment has become accessible to outside entities.”

TIP OF THE ICEBERG

As crews get smaller and ships get bigger, they increasingly rely on automation and remote monitoring, meaning key components, including navigational systems, can be hacked.

A recent study by security company Rapid7 found more than 100,000 devices – from traffic signal equipment to oil and gas monitors – were connected to the internet using serial ports with poor security. “The lines get blurry, and all industries and all technologies need to focus more on security,” said Mark Schloesser, one of the authors of the study.

Mark Gazit, CEO of ThetaRay, an internet security company, said an attacker managed to tilt a floating oil rig to one side off the coast of Africa, forcing it to shut down. It took a week to identify the cause and fix, he said, mainly because there were no cyber security professionals aboard. He declined to say more.

Lars Jensen, founder of CyberKeel, a maritime cyber security firm, said ships often switch off their AIS systems when passing through waters where Somali pirates are known to operate, or fake the data to make it seem they’re somewhere else.

Shipping companies contacted by Reuters generally played down the potential threat from hackers. “Our only concern at this stage is the possible access to this information by pirates, and we have established appropriate countermeasures to handle this threat,” said Ong Choo Kiat, president of U-Ming Marine Transport, Taiwan’s second-largest listed shipping firm by market value. The company owns and operates 53 dry cargo ships and oil tankers.

VIRUS-RIDDLED

A study last year by the Brookings Institution of six U.S. ports found that only one had conducted an assessment of how vulnerable it was to a cyber attack, and none had developed any plan to response to any such attack. Of some $2.6 billion allocated to a federal program to beef up port security, less than 1 percent had been awarded for cyber security projects.

When CyberKeel probed the online defences of the world’s 20 largest container carriers this year it found 16 had serious security gaps. “When you look at the maritime industry there’s extremely limited evidence of systems having been breached” compared to other sectors, said CyberKeel’s Jensen. “That suggests to us that they’ve not yet been found out.”

Michael Van Gemert, a security consultant to the oil and gas industry, said that on visits to rigs and ships he has found computers and control systems riddled with viruses. In one case, he said it took 19 days to rid a drilling rig en route from South Korea to Brazil of malware which had brought the vessel’s systems to a standstill.

“The industry is massively in need of help, they have no idea what the risks are,” he said.

The main ship navigation systems – GPS, AIS and ECDIS – are standards supported by bodies such as the International Maritime Organisation (IMO). Indeed, that body has made AIS and ECDIS mandatory on larger commercial and passenger vessels.

Researchers from the University of Texas demonstrated last July that it was possible to change a ship’s direction by faking a GPS signal to dupe its onboard navigation system.

Marco Balduzzi and colleagues at anti-virus vendor Trend Micro last month showed that an attacker with a $100 VHF radio could exploit weaknesses in AIS – which transmits data such as a vessel’s identity, type, position, heading and speed to shore stations and other ships – and tamper with the data, impersonate a port authority’s communications with a ship or effectively shut down communications between ships and with ports.

In January, a British cyber security research firm, NCC Group, found flaws in one vendor’s ECDIS software that would allow an attacker to access and modify files, including charts. “If exploited in a real scenario,” the company concluded, “these vulnerabilities could cause serious environmental and financial damage, and even loss of life.”

When the USS Guardian ran aground off the Philippines last year, the U.S. Navy in part blamed incorrect digital charts. A NATO-accredited think-tank said the case illustrated “the dangers of exclusive reliance upon electronic systems, particularly if they are found vulnerable to cyber attack.”

“Most of these technologies were developed when bandwidth was very expensive or the internet didn’t exist,” said Vincent Berk, CEO of security company FlowTraq.

NO QUICK FIX

Fixing this will take time, and a change in attitude.

“Security and attack scenarios against these technologies and protocols have been ignored for quite some time in the maritime industry,” said Rapid7’s Schloesser.

Researchers like Fotios Katsilieris have offered ways to measure whether AIS data is being faked, though he declined to be interviewed, saying it remained a sensitive area. One Google researcher who has proposed changes to the AIS protocol wrote on his blog that he had been discouraged by the U.S. Coastguard from talking publicly about its vulnerabilities.

Indeed, AIS is abused within the industry itself.

Windward, an Israeli firm that collects and analyses AIS data, found 100 ships transmitting incorrect locations via AIS in one day – often for security or financial reasons, such as fishing boats operating outside assigned waters, or smuggling.

In a U.N. report issued earlier this year [PDF] on alleged efforts by North Korea to procure nuclear weapons, investigators wrote that one ship carrying concealed cargo turned off its AIS signals to disguise and conceal its trip to Cuba.

It’s not clear how seriously the standards bodies treat the threat. Trend Micro’s Balduzzi said he and his colleagues were working with standards organisations, which he said would meet next year to discuss his research into AIS vulnerabilities.

The core standard is maintained by the International Telecommunications Union (ITU) in association with the IMO. In a statement, the IMO said no such report of vulnerabilities had been brought to its attention. The ITU said no official body had contacted it about the vulnerabilities of AIS. It said it was studying the possibility of reallocating spectrum to reduce saturation of AIS applications.

Yevgen Dyryavyy, author of the NCC report on ECDIS, was sceptical that such bodies would solve the problems soon.

First, he said, they have to understand the IT security of shipboard networks, onboard linked equipment and software, and then push out new guidelines and certification.

Until then, he said, “nothing will be done about it.”

($1 = 0.5949 British Pounds) (Additional reporting by Keith Wallis; Editing by Ian Geoghegan)

Meshing and Stacking Away from Disaster

I’m often haunted by the folk in Wall-E, the movie where humans have abandoned Earth to trash, a small waste-collecting robot and a cockroach. That’s not the bit that scares me: it’s the space-bound humans who are ferried around on pods, their eyes permanently glued to a screen in front of them.

Is this, I ask my worried self, our future? Or has it already happened?
In some ways it has. But for what it’s worth I think it’s a blip. The future won’t in fact look like that at all.

Right now we definitely have a problem. The problem is that screens have gotten smaller, or rather more portable, more convenient, and the content on them has become so compelling that we risk life and limb to watch them as we walk, stand and sit.

But this is just a phase.

I detect the beginnings of a shift. Not of our behaviour – sadly we’ll always be vulnerable to fixating on any screen with bright colours and movement. But the sheer multiplicity of screens is forcing change on us.

Consider the following: Of the seven hours a day spent gazing at a screen, at least two of those hours are actually watching two or more screens. Millward Brown, a brand consultancy, calls it meshing and stacking.

Whereas before we’d pop off to the kitchen to put the kettle on, now we scroll through our tablet to see what people are saying on Twitter about what we’ve just watched. Then there’s shifting, where we start watching something on one screen, and then finish it on a laptop, a smartphone or a tablet.

This may seem like appalling behaviour, slicing our attention into ever thinner chunks. And in some ways it is, but it means that we’re unlikely to be subsumed by any one screen. And that’s good, because we’re dominating the screens, not them dominating us.

There are other things afoot. Screens don’t need to be big to do big things for us: the latest version of Google’s Android operating system allows the user to stitch together separate photos of a view and then relive the panorama by moving the phone around in the air, the image moving as if the scene was in front of the viewer. It’s a extraordinary feeling, recreating a mural on a screen the size of your hand.

Then there’s something called Spritz, an app that allows you to speed read a book in a viewer no larger than 18 letters. The maker of the app says by shuttling words past your vision at speed 80% of your effort is saved for reading and absorbing. I was pretty amazed; it seemed to work, and makes you think about whether you really need a book-sized screen to recreate the experience of reading a tome.

Then there’s something called Snapchat, where users can send photos to each other which can only be viewed for a few seconds before disappearing forever. It’s hard to see the value in this, until someone pointed out that the value lies in the intimacy of the moment. Users don’t open the picture immediately, preferring to find a quiet, private space to enjoy it. Counterintuitively, by making the photo ephemeral, the app makes the process of viewing it special and the memory of it longer lasting.

Some might say I’m grasping at straws. But I see in these examples the beginnings of a new approach to how we relate to our screens. For sure, some of us will remain their slaves. But for others we may find new ways to derive pleasure from them, whether it’s recreating a vista, reading a tome or viewing a photo.